
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP010978
TITLE: Adopting New Software Development Techniques to Reduce
Obsolescence

DISTRIBUTION: Approved for public release, distribution unlimited

This paper is part of the following report:

TITLE: Strategies to Mitigate Obsolescence in Defense Systems Using
Commercial Components [Strategies visant a attenuer l'obsolescence des
systemes par l'emploi de composants du commerce]

To order the complete compilation report, use: ADA394911

The component part is provided here to allow users access to individually authored sections
f proceedings, annals, symposia, etc. However, the component should be considered within

[he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADPO10960 thru ADPO10986

UNCLASSIFIED

23-1

Adopting New Software Development Techniques to Reduce Obsolescence
C H R Lane, E S Beattie, J S Chita, S P Lincoln

BAE SYSTEMS
Crewe Toll, Ferry Road, Edinburgh EH5 2XS, UK

Tel: +44 131 343 4932 Fax: +44 131 343 4631 E-mail: charliejlane(jbaesystems.com

Abstract:

This paper reports on the advanced techniques employed in the specification of software requirements and the
subsequent software development for an E-Scan demonstrator Radar Data Processor. This involves the Rapid Object-
oriented Process for Embedded Systems (ROPES) [1], UML syntax, object-oriented design, and automatic code
generation and test.
The COTS technology reported is in terms of commercially available state of the art method and tool support for the
software analysis and design. The resulting software product contains a significant proportion of COTS code resulting
from the code-generation. We are also using automation in development of our MMI, a COTS GUI-builder, and COTS
hardware and operating system.
In this paper we also report on the object-oriented method, using the ROPES process, together with information about
how in practice we are implementing the theory. We present the structure of the software and how it relates to the
application under development.

With these techniques there are significant reductions in obsolescence due to:

"* customer visibility and understanding of the product under procurement, making clear the advantages and
limitations of what will be produced,

"* development of a coherent, consistent and maintainable system specification,

"* use of use an industry-standard model notation (UML) to capture the analysis and design, enabling portability of
the design to other tools and products,

"* flexibility in catering for evolving requirements,

"* development of testable requirements, enabling original functionality to be re-checked after addition of
enhancements,

"* techniques for enabling the re-use or replacement of modules with defined interfaces,

"* easy and maintainable connections between specification and implementation,

"* high initial quality and low rework costs.

This paper will be of benefit to those just embarking on system and software development, or considering updating
processes in a legacy project. It is also applicable to those just embarking on choice of tools and methods for initiating
programmes as well as for early feasibility studies.

Keywords: System Specification, Requirements Analysis, Real-time, UML, Object-oriented, Analysis, Design,
Modelling, Code-generation

processing, as well as controlling the activities of other

1 Introduction subsystems such as the antenna and the
receiver/exciter. The TMC consists of two main areas:

The E-Scan radar project is aimed at
producing a flying demonstrator of an
electronically-scanned phased-array antenna. Recver(s)
It will be fully capable of tracking targets ERs
and will provide some advanced features
such as adaptive beamforming, but will not
include the full range of functionality of a Receiver/Exciter

system such as the Captor Radar integrated (Conventional)

with the Eurofighter Typhoon weapon SIP DAP
system.

The Trials Monitor Computer (TMC) is the AntennaDisplay

main processor in the radar and is
responsible for the signal and data Figure 1

Paper presented at the RTO SC] Symposium on "Strategies to Mitigate Obsolescence in Defense Systems
Using Commercial Components ", held in Budapest, Hungary, 23-25 October 2000, and published in RTO MP-0 72.

23-2

the Signal Processor (SIP) is largely for handling the environment. The tool vendor is increasing the number
flow of digital data from the receiver and processing it of target platforms supported as market forces dictate.
continuously to obtain events relating to target An early decision to purchase consultancy and training
detections; the Data Processor (DAP) is event-based, on both tools and methods has proved to be very
creates tracks of targets from the detections and fruitful and well worth the outlay.
manages the distribution of RF power radiated, and has
an MMI for controlling other functions. 2.2 Using UML

Both SIP and DAP use predominantly COTS
hardware, with commercial operating systems and The UML is a notation that has evolved from Software
development tools. Development. Some of the tools, such as Use Case and

Sequence Diagrams are specifically aimed at creating a
This paper relates to the DAP. realistic model of what the customer wants.

2 Technical Details Previously, the specification of requirements have been
expressed as "Victorian novel" text - often disjointedly
spread across a number of documents - combined with

2.1 State of the Art Software Tools a collection of algorithms and little consultation with

At the outset, the decision was made to invest in the software engineers responsible for implementation.
technology to reduce the cost and timescales of This has often been followed by what is described as
software development. This approach is key to making the "over the wall" approach where the requirements
a successful demonstrator in a short period, are passed to the software engineers and the systems

The tools have to provide analysis and design support, engineers move onto something else. Large amounts of
starting from requirements with a clear path through software development effort is then spent rewriting the
the design to automatic generation of code from the contents of the requirements documents into a
design (not just code frames). To validate the design, Software Requirements Specification (SRS). This
simulation is essential and the testing support must process is illustrated in figure 3.
enable verification of the generated system behaviour The traditional approach leads to a number of
against that defined in the requirements. problems:

From the handful of tools that met our basic 1. Generation of the requirements is difficult to
requirements, we chose the I-Logix Rhapsody tool, manage.
which provides for full UML analysis and design, code 2. Traceability to, and Verification of, the
generation and automatic verification against requirements is difficult to achieve.
scenarios. 3. Maintenance of the requirements is expensive.

Our core tool set consists of Rhapsody (analysis, 4. Software is difficult to develop.
design, simulation, verification), DOORS 5. Changes in requirements (which are accepted
(requirements tracking) and ClearCase (configuration as inevitable) are difficult to implement.
management). Although from different manufacturers,
these tools provide useful integration and have been Customer

found to work well together. Supporting these are the Specification

usual set of C++ compilers, host support (the Wind
River RTOS VxWorks) and other productivity S

enhancements (See Figure 2). systems

Prelrn ary Algritthm System
DOOeRSn Description Specification

Document Doues

Gui-buiider - Rhapsody ClearCase

Software
Requirement
Specification

dynamnic Vx2oks (\
Software
Design

Figure 2

From an obsolescence perspective the capability of the Sfwr

Rhapsody tool to select a target environment is of -mplement-
particular importance. As target platforms become ation
obsolete the tool has a number of platforms that can be
selected and the code regenerated for that particular

Figure 3

23-3

The approach we have adopted for the DAP is to have requirements with ease. Both the SRS and ACD are
an integrated systems-software team (see figure 4) and embedded in the DOORS Requirements Traceability
a closely coupled SRS/ACD pair (see figure 5). This tool.
approach is detailed below With the creation of a closely coupled SRS/ACD pair a

Requirements Analysis (from the ROPES perspective) detailed definition of the system exists that can be well
is performed using Use Cases, Sequence Diagrams and understood by those using it. This is the first step to
Statecharts. The Requirements Analysis results in a ease of maintenance and the resulting reduction in
functional decomposition of the DAP, the details of overhead costs. Generally, maintenance of systems
which are captured in the Software Requirements documentation (inevitable in light of changing
Specification (SRS). The Use Case descriptions give requirements) is complicated by a poorly defined set of
the functional details of the system in a textual manner, requirements that are scattered across a number of
that will be utilised later in identifying objects, with the documents that have little or no real relationship. By
sequence diagrams defining the Use Case behaviour in ensuring that the Specification is easily understandable
a dynamic manner. (using UML) and well laid out (and thus easily

navigable) the impact of change can be quickly
Customer R.q...ý assessed and is less onerous to implement.

..

Systems SYM- K dge Bs

Specification E

Integrated

Figure 4 <•••Figure 5
Algorithmic Definition is carried out based on this

functional decomposition of the system, which is 2. Sytm-owaeneg te Tas
agreed early in the project lifecycle by the integrated Experience has shown that unless the systems engineer
systems-software team. The algorithms are described understands the process by which their specification
using Activity Diagrams to show the blocks and flow (itself another interpretation of the customer
of algorithmic activity with references to mathematical requirements) is implemented the systems-software
formulae and textual descriptions as appropriate. This review process is prone to failure. (Sometimes the
detail is captured in an Algorithm Control Document, systems-software relationship goes the same way.)
which supplements the SRS. With the use of a common language of understanding

By using the same functional decomposition for both that is intuitive in its usage these two problems can be
documents, it becomes easier for the software team to alleviated. The fact that Use Case, Sequence Diagrams
understand which algorithms are required to implement and Activity Diagrams are simple concepts to
a particular area of functionality (i.e. a use case). understand, powerful in their capability for

The eveopmet o theSRSandthe CD re ieraive representing complex requirements and are now widely
The eveopmet o theSRSandthe CD re ieraive accepted as a way of describing requirements means

in nature and can allow details of algorithmic thtteSfwrEnieshonvialpoer
implementation to be fleshed out much later in the thatste Sofwaret Engnees, waahoinvariably-n pioneere
lifecycle than would normally be the case. One of the teenwmtos a civ byi"fo h
benefits to this approach is early introduction of systems engineers.

software engineering effort to the process which For this relationship to be successful, it is essential that
removes the lengthy delay whilst algorithms are the systems engineering team are given the appropriate
"fully" defined by systems engineers before software training in the development methodology and
development starts, sufficient time to review the software work products-

Link beweentheSRS nd CD eabl thetwo particularly the Object Analysis (both structural and
documents to give a detailed and co-ordinated behavioural).

description of the System. Using hypertext links, an On the DAP, systems engineers receive the same
engineer or customer can navigate around the training in software methodology and tools as the

23-4

software engineers. A core team is formed which In developing functional prototypes and quickly
allows very close inter-working to take place on a level reaching the stage where executable software is
playing field. This enables the software engineers to running on a target (much earlier than in traditional
bring their experience into the development of the developments), problems with requirements can be
system specification whilst allowing the systems fed-back quickly and avoiding action taken. The
engineers a greater understanding of, and input to, the prototype may be re-iterated and re-incorporated in the
software development process in the subsequent phases application to include the changed requirement.
of the lifecycle.

In particular, the integrated team work together to 2.5 Requirements Testability
create the software object analysis model. This co-
operation helps the software team to understand the Although the combination of Use Cases and Sequence
requirements and means the systems team will Diagrams gives a powerful means of specifying the

understand how the software will implement the requirements there is an additional benefit to the
requirements. During the creation of this model, the creation of Sequence Diagrams. The use of Sequence
integrated team can ensure, at an early stage, that the Diagrams implicitly forces engineers to address the

software will implement the requirements and issue of testing the functionality being defined. This is

algorithms stated in the SRS and ACD. as applicable for lower level integration test (for sub-
system use cases) as it is for high-level system

2.4 Flexibility with Evolving acceptance testing (system use cases).

Requirements On the DAP we use the Rhapsody CASE tool to carry
out automated Sequence Diagram comparison. That is,

As stated, the DAP is being developed using the the Sequence diagrams specified can be compared with
ROPES process. This is an iterative/incremental means those generated by the actual model created to fulfil
of software development using the Spiral Lifecycle. the requirements.

Use Case analysis gives a functional decomposition of
the system. In our application each Use Case has been 2.6 Connecting Requirements through to
identified as an "Iterative Prototype". Design Models

These prototypes are taken through the full software The analysis of requirements is carried out by first of
lifecycle to produce working software. This gives a all defining the Use Cases (i.e. the particular areas of
great deal of scope for risk reduction in the early stages functionality) as shown in figure 6. The Use Cases are
of a programme by allowing working code to be initially just headlines, but are rapidly filled-out with
developed for a target platform. The choice of which scenarios: there will typically be a number of Sequence
prototypes should be developed first is based on risk Diagrams for each use case, showing the functionality
impact assessment. in specific situations (see figure 7).

The additional benefit is that the prototype is re-
useable, in so much as it is a building block to be used Data P,,

in the incremental development of the application.

introduction of required (phased) functionality, the S Wra

application is developed incrementally by the TeSystem
integration of the prototypes.

Engineering Receiver
By adopting this development process there are two Display
main areas of benefit in respect of flexibility.

The algorithmic development can continue during the
software development process for agreed areas of c

functionality within the system (i.e. Use Cases that

may be implemented later in the programme). The Use Figure 6-a
Cases and Scenarios give the functional structure, or
framework, of the system under development at an
early stage. This allows the 00 development to
progress to the detailed design phase before the
algorithms must be completed.

23-5

System Wrap Test which brings together a number of the best practice

GOAL/PURPOSE, lines of thought, specialised for real-time applications.
Perform the Radar system wraparound communication BIT test. The first stage in this is to define preliminary
TRIGGER EVENT, do Radar Wraparound test request from Engineering Display operator "subsystems", which are in effect collections of

PRECONDITIONS* The CAR radar is in a'Standby' or Operative State. functionality. Each use case is placed into a subsystem
POSTCONDITION: - the use cases are decomposed to such a level as to
Success End -'Wraparound Test Ok' message is indicated on the Engineering Display.
Failed End - Test failed or timeout. 'Wraparound Test Fail' message and the cause of failure ensure that each use case is in only one subsystem,

shall be indicated on the Engineering Display. though the subsystems will often contain more than

MAIN SUCCESS SCENARIO one use case.
See Message sequence diagram 'MSC Sys Wrap'

EXTENSIONS In figure 8, "Radar Control", "Burst Control" and
tbd "Tracker" are the subsystems within the "DAP".

EXCEPTIONS
I.No response from any LRIs within TBD milli seconds, Initial policy is to abort operation The subsystems and their identified artefacts are

and report a fault . In the fture a recovery sequence (sofl reset LRI and retry a max of2 times) defined as the "Physical Model". This is captured in
nay be imple...nted. Rhapsody by a Physical package (shown in Fig. 11).

PERFORMANCE (Quality of service)
Priority: Low. Any radar activity in progress should be allowed to goto completion. The often-difficult borderline between function-based
Performance - Test done within 100 millisecond.

Frequency: Periodic - execute during a Resource Frame BIT slot (0.5 1 z) specification and object-based implementation is
Episodic - execute Wraparound Bit test on operator request encountered at this point: the implementation of the

Figure 6-b use cases is by domain classes instantiated in the
subsystems.

DAP

Searcht for on

targets ba

Radar
Display

ACC

.. \,

Figure 7R

Display Cntoroe

At this level, the analysis is very much in terms that a
customer would understand - we are in the favourable
position of being both pseudo-customer (writing
requirements on behalf of the actual customer) and
contractor (implementing those requirements), so we RxR

have been able to make sure that the analysis correctly Tracker

echoes the requirements.

A key advantage is that, because the Use Cases and
Sequence Diagrams are captured in the Rhapsody tool
(subsequently used for detailed design) and linked SIP

back to source requirements in DOORS, requirements
are traceable to the implementation. Figure 8

2.7 Moving From Functionality to Subject Matter Separation, one of the useful aspects of
Objects: Domains and Subsystems the Shlaer-Mellor methodology has been imported into

ROPES, in the form of domains. Within a domain are

The methodology used on this project is Rapid Object- collected all the objects that relate to a particular
Oriented Process for Embedded Systems (ROPES), subject matter (e.g. I/O, alarms, tracking). These are

23-6

an orthogonal set to the subsystems: all objects are in via an Ethernet bus. Normally in a single processor
fact defined in domains, but are "used" in the system the 2 subsystem communicate with each via 2
subsystems. The collection of domains identified is associations links using asynchronous events:
referred to as the "Logical Model". This is captured in 1) MessageRouterController->iEngDisplay.
Rhapsody by a Logical package (shown in Fig. 11). 2) EngDisplayController->iDapCommand.

A domain diagram (figure 9) shows the inter-
relationships between the domains: These associations for the distributed processor are

then realised using a combination of 2 patterns (figure
10):

1) The Proxy pattern provides location transparency.
",oo ,rc2) Forwarder eReceiver implements the

interprocessor communication between the 2
""Usage,> Usage> subsystems.

"Usage> -U .

"<Usage>> ,Usage>>

d~~btractio _ ___

Figure 9

Although it would in principle be possible to follow Figure 10

the Shlaer-Mellor project organisation model and have
domain specialists, we have chosen to avoid the 2.10 Units of Re-use
potential for boredom in team members by dividing
work by subsystem and use-case rather than domains, To achieve reduction in obsolescence, we must identify

though we retain an element of domain-ownership to the specific units that are available to be re-used. The

ensure consistency. aim is to be able either to extract these units to be used
in a new system, or to be able to replace units of the
current system when changes in functionality are

2.8 From Analysis to Design required.

The dilemma encountered with elaborational methods We have identified two main areas of re-use:
is that one may lose sight of the analysis after adding a) Subsystem Re-Use, when exactly the same
design information. The high level objects are created functionality (i.e. the same Use Cases) is required
only in order that the use cases and their sequence in a new system, or when the complete set of
charts may be defined and do not take account of functionality is to be replaced with new
whatever is found necessary for the detailed design. functionality in the current system. The subsystem

One solution that has been proposed is to keep two is a convenient unit of re-use as it instantiates all
models, the original analysis model and the design the classes it needs to operate (it can be seen rather
model (as elaborated). The difficulty with this is as a PCB in hardware terms). When a subsystem is
keeping the two models synchronised. moved to another place, only its external

interfaces need to be observed and attached into its
The alternative is to continue with a single model thus new surroundings. This is done in practice by
reducing analysis/design consistency issues. If one setting up relationships to defined interface
utilises the idea from ROPES that several "views" of classes for inputs to the subsystem and initialising
the model can exist then one can show purely analysis the relationships from within the systems for its
views from which the design views are subsequently outputs. Both the identity of the interface class and
created. the initialisation of output relationships are

available as public operations on the subsystem.

2.9 Implementing Distribution b) Domain Re-Use, when classes in a domain,

Shows how distribution is implemented when originally designed to implement a different set of

subsystems are located on separate processors linked Use Cases, can be re-used to create a new
Subsystem. The domain classes can be seen as a

23-7

"toolbox" available to implementers of Use Cases,
who are encouraged by publication of the domain Fl- Edi ew Oode Tod kdp

services to pick classes from there rather than
invent new classes. The benefits of the design
patterns will automatically be achieved when the
classes are used in a new Subsystem to fulfil the + - Packagesl• i sstem

Use Cases of that Subsystem. This can be a more +
difficult level of re-use to achieve, because the I• Ialiaton
implementer of a Use Case may identify slightly - I Logical

E- C Packages
different requirements for the classes than those in B • dBIT
the "toolbox" - but by careful management c Cacses

maximum use of existing classes, with inheritance • Dependencies

to provide for small variations, can be achieved. Events
t- C Object Model Diagrams

Because our development method clearly identifies 4 DomanClasges~veimen

both subsystems and domains in the artefacts 0, d•. tadGui

generated, we have a head-start on achieving re-use. + - dHvAbstraction
S d nputOutput

+ dRadar
3 Results W • Physical

P = Packages

* sBumtManagement
We have found the Rhapsody tool and the ROPES 1 -ConsiantStore
method to fit well into our environment. The + A isplayMessageRouier
requirements analysis has provided a sound baseline EngDisplay

F • sPowerUpandBIT~anagement

for the object oriented analysis and design, which is + C seU
proceeding well. One additional benefit is that we can + Events

now provide to our partners in the project not just + Object Model Diagrams
- Packages

paper documentation of the design but also animated c i CBIT

simulation prototypes. ucDSubsystemWapTestSl J[ClassesBy using a UML-based method we have also found it - [bducDoSusystemWrapTest

easy to bring new recently-graduating members into i it~espense ucSubsystemWrapTesiStub
the team, making use of the training in object-oriented + IessageRouterControl erucSubstslemWraSYTeslHarnessucD oSubsystemWrapT est

techniques that now commonly forms part of software n O bjec Model Dagrams

engineering courses. M r TeslHarness

We have utilised the concepts of the Physical and Figure 11
Logical models to develop the software application [2].
The Physical model defines the system to be
implemented, the logical model captures the domains 3.2 Physical Model: Object Model
which themselves contain the essential building blocks, Diagram
or classes, of the system. The objects involved in a use case can be shown on an
The System package contains the System Actors and object model diagram for a particular subsystem:
the Subsystem architecture identified during
Architectural design.

The Build package contains the incremental builds and
is effectively the instantiation of the Physical model.

3.1 First Prototype I.....

Our first prototype is based on a wrap-test of the
system, which runs a communication check on
simulations of the other subsystems. We took this
prototype all the way from requirements through use
cases to detailed design, implementation and test. W....."°

The following diagram shows a "browser" view of the
system package structure. The domains have names
starting with "d" and are captured in the Logical
package, the subsystems "s" and are captured in the
Physical package. Figure 12

23-8

3.3 Logical Model: Active Class 3.6 Build Model: System Instantiation

The implementation of the behaviour of the active Shows the classes used to build up the DAP system for
classes is generally shown in a state chart: standalone testing on the PC development host.

\ ev~~ubsytemwa = ding~lW~apes[-subsystem-it

3. Build~ttaus) Model: Useas Insteantiaition• il

Shows the classes us ted to buil uo rpo~ the ueg cas e.PwrpnlI~ng~n

ev~e•ub~y~em~ra~a u[eporl -sRurasystDeme

Fiigure 13

cofimaio Buil Model Usecas andmetoanhociationlsa
Shows ~~~ ~ th firs classe prottyp tho ml pteue ae Pwr plnBTaaements ato h

functonalty ofthe sullsystem>>

Sfwr rersnt i ague an16 resn rooto

~~~~~~o ............. the wra-tst hs ofcu r oent syst ems. sfurre n ot hg sonlyware
' ............. •costsforam ostino ever projec indmto hica e , that thisoi an

tj~ ~ ~ ~ ~ ~ ~ ~~ae w........... .. ' hefrst realuprtiotyp ofa obsolesene panicreas ofth

Fgr 14....... reoe func tional i ntyrofdth e d fl costsem.ftresstm

ar t

Instantiation.f.a.e.o. fo 4eCncapsultniontoaltnsprvd

S.................dSo t ha e keyprese nts aage. Simpl insertaiong pofpobject-

PTD---Nofrhi cssofrente anls systdesig irnto hag coftwany'
prcessts does nostevr proviec allicthe adathatgtesisthat

L IT could be obtaintued, s costs ffutdre little

Figurerem1n3witin liamitd ugets.A

3.4 Build Model: usestem the object-oriented tnsta aitesi a

Shows the classes used to build up the ausese.apsitoruseeno

csomrietevaaisibswy andadesingn ithos requirmpanytst

I.EITS--rocsse doe 1o provide thalls o the dein advagntge theae te
11 ::r:cTees fro f<,~::c •c u ncioald to objand o eompande building uptl

Thenewrapitesth proved sucss no onld

cof iare mation edit of th e t nES method a

toheftwre l m ptco ping the requirements paitin otha
softwareoe reprires ents eavg andcasing re opretiso

Sparts of the ofsts o currth s ystems.gCurrentgigh sotarep

S... • / cfost funtornalmoteey proojects indict thautisdisgan
1 •arefuctoalweeieutyion poftobsolescenct e anu ieas. o

Fiu 4re mqu tbe intre ifecosts, for future syte
airereo 1remai wtiirmied bets.

I ....... theoretiicalt posiblty for tesfwre-ue it does nosteof itself

coquldremobtained somem opaisfidnnltl
Fibenefit.



23-9

5 References:

[1] Douglass, Bruce Powel, Doing Hard Time [2] Douglass, Bruce Powel, Effective Use Cases for
Developing Real-time Systems with UML, Objects, Real-Time Design, Version 1.3.1
Frameworks and Patterns, 1999, Addison-Wesley,
ISBN 0-201-49837-5.

6 List of Acronyms

ACD Algorithm Control Document MMI Man Machine Interface
COTS Commercial Off The Shelf ROPES Rapid Object-oriented Process for

Embedded Systems
DOORS A requirements traceability tool SRS Software Requirements Specification
GUI Graphical User Interface TMC Trials Monitor Computer

UML Unified Modelling Language

Copyright © 2000 by BAE SYSTEMS Avionics Ltd.



This page has been deliberately left blank

Page intentionnellement blanche


